The cortical site of visual suppression by transcranial magnetic stimulation.
نویسندگان
چکیده
In visual suppression paradigms, transcranial magnetic stimulation (TMS) applied approximately 90 ms after visual stimulus presentation over occipital visual areas can robustly interfere with visual perception, thereby most likely affecting feedback activity from higher areas (Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L. 1989. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458-462.). It is speculated that the observed effects might stem primarily from the disruption of V1 activity. This hypothesis, although under debate, argues in favor of a special role of V1 in visual awareness. In this study, we combine TMS, functional magnetic resonance imaging, and calculation of the induced electric field to study the neural correlates of visual suppression. For parafoveal visual stimulation in the lower right half of the visual field, area V2d is shown to be the likely TMS target based on its anatomical location close to the skull surface. Furthermore, isolated stimulation of area V3 also results in robust visual suppression. Notably, V3 stimulation does not directly affect the feedback from higher visual areas that is relayed mainly via V2 to V1. These findings support the view that intact activity patterns in several early visual areas (rather than merely in V1) are likewise important for the perception of the stimulus.
منابع مشابه
The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملMEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملEffect of different frequencies of repetitive transcranial magnetic stimulation (rTMS) on acquisition of chemical kindling seizures in rats
IIntroduction: Repetitive transcranial magnetic stimulation (rTMS) modulates the excitability of cortical neural networks. The effect of rTMS on excitability of cortical networks depends on its frequency. According to the previous reports, a distinction is made between low (<1Hz) and high frequencies of rTMS. Low frequencies of rTMS inhibit seizure but high frequencies increase it. In the curre...
متن کاملTransient suppression of primary visual cortex using transcranial magnetic stimulation
Recent advances of transcranial magnetic stimulation can provide new methods to elucidate the mechanism of higher brain function or cortical plasticity. For example, transcranial magnetic stimulation can produce transient disruption of the visual perception or modulation of cortical functions. Probably, the induced eddy current in the brain disturbs the information processing from external sign...
متن کاملRole of Repetitive transcranial magnetic stimulation on drug use craving and addictive behaviors: Review Study
Introduction & Objective: Repetitive transcranial magnetic stimulation (rTMS) is an electro physiologic brain stimulation and integration technique that can change the cortical excitability of the target area in the brain and modulate the nervous and muscular ductility. Addiction is associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) and altered cerebral oscillations. Acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2010